Source code for realutils.metrics.clip

"""
Overview:
    CLIP (Contrastive Language-Image Pre-training) model utilities' module.

    This module provides functions for working with CLIP models, including image and text embedding
    generation and classification. It supports loading ONNX-converted CLIP models from Hugging Face Hub
    and performing inference for both image and text inputs.

    All models and preprocessors are hosted on Huggingface
    repository `deepghs/clip_onnx <https://huggingface.co/deepghs/clip_onnx>`_

    .. image:: clip_demo.plot.py.svg
        :align: center

    This is an overall benchmark of all the CLIP models:

    .. image:: clip_image_benchmark.plot.py.svg
        :align: center

    .. image:: clip_text_benchmark.plot.py.svg
        :align: center

"""

from typing import List, Union

import numpy as np
from imgutils.data import MultiImagesTyping
from imgutils.generic import clip_image_encode, clip_text_encode, clip_predict

_REPO_ID = 'deepghs/clip_onnx'
_DEFAULT_MODEL = 'openai/clip-vit-base-patch32'


[docs]def get_clip_image_embedding(images: MultiImagesTyping, model_name: str = _DEFAULT_MODEL, fmt='embeddings'): """ Generate CLIP embeddings for input images. :param images: Input images to encode :type images: MultiImagesTyping :param model_name: Name of the CLIP model to use :type model_name: str :param fmt: Output format ('embeddings' or 'encodings') :return: Image embeddings or encodings based on fmt parameter :example: >>> from realutils.metrics.clip import get_clip_image_embedding >>> >>> # one image >>> emb = get_clip_image_embedding('xlip/1.jpg') >>> emb.shape, emb.dtype ((1, 512), dtype('float32')) >>> >>> # multiple images >>> emb = get_clip_image_embedding(['xlip/1.jpg', 'xlip/2.jpg']) >>> emb.shape, emb.dtype ((2, 512), dtype('float32')) """ return clip_image_encode( images=images, repo_id=_REPO_ID, model_name=model_name, fmt=fmt, )
[docs]def get_clip_text_embedding(texts: Union[str, List[str]], model_name: str = _DEFAULT_MODEL, fmt='embeddings'): """ Generate CLIP embeddings for input texts. :param texts: Input text or list of texts to encode :type texts: Union[str, List[str]] :param model_name: Name of the CLIP model to use :type model_name: str :param fmt: Output format ('embeddings' or 'encodings') :return: Text embeddings or encodings based on fmt parameter :example: >>> from realutils.metrics.clip import get_clip_text_embedding >>> >>> # one text >>> emb = get_clip_text_embedding('a photo of a cat') >>> emb.shape, emb.dtype ((1, 512), dtype('float32')) >>> >>> # multiple texts >>> emb = get_clip_text_embedding([ ... 'a photo of a cat', ... 'a photo of a dog', ... 'a photo of a human', ... ]) >>> emb.shape, emb.dtype ((3, 512), dtype('float32')) """ return clip_text_encode( texts=texts, repo_id=_REPO_ID, model_name=model_name, fmt=fmt, )
[docs]def classify_with_clip( images: Union[MultiImagesTyping, np.ndarray], texts: Union[List[str], str, np.ndarray], model_name: str = _DEFAULT_MODEL, fmt='predictions', ): """ Perform classification using CLIP model by comparing image and text embeddings. :param images: Input images or pre-computed image embeddings :type images: Union[MultiImagesTyping, numpy.ndarray] :param texts: Input texts or pre-computed text embeddings :type texts: Union[List[str], str, numpy.ndarray] :param model_name: Name of the CLIP model to use :type model_name: str :param fmt: Output format ('predictions', 'similarities', or 'logits') :return: Classification results based on fmt parameter :example: >>> from realutils.metrics.clip import classify_with_clip >>> >>> classify_with_clip( ... images=[ ... 'xlip/1.jpg', ... 'xlip/2.jpg' ... ], ... texts=[ ... 'a photo of a cat', ... 'a photo of a dog', ... 'a photo of a human', ... ], ... ) array([[0.98039913, 0.00506729, 0.01453355], [0.05586662, 0.02006196, 0.92407143]], dtype=float32) """ return clip_predict( images=images, texts=texts, repo_id=_REPO_ID, model_name=model_name, fmt=fmt, )