"""
Overview:
Detect human heads in both real photo and anime images.
Trained with `deepghs/anime_head_detection <https://huggingface.co/datasets/deepghs/anime_head_detection>`_ \
and open-sourced real photos datasets.
.. image:: head_detect_demo.plot.py.svg
:align: center
This is an overall benchmark of all the head detect models:
.. image:: head_detect_benchmark.plot.py.svg
:align: center
The models are hosted on
`huggingface - deepghs/real_head_detection <https://huggingface.co/deepghs/real_head_detection>`_.
"""
from typing import List, Tuple
from imgutils.data import ImageTyping
from imgutils.generic import yolo_predict
_REPO_ID = 'deepghs/real_head_detection'
[docs]def detect_heads(image: ImageTyping, model_name: str = 'head_detect_v0_s_yv11',
conf_threshold: float = 0.2, iou_threshold: float = 0.7, **kwargs) \
-> List[Tuple[Tuple[int, int, int, int], str, float]]:
"""
Detect human heads in both real photo and anime images using YOLO models.
This function applies a pre-trained YOLO model to detect heads in the given anime image.
It supports different model levels and versions, allowing users to balance between
detection speed and accuracy.
:param image: The input image for head detection. Can be various image types supported by ImageTyping.
:type image: ImageTyping
:param model_name: Optional custom model name. If provided, it overrides the auto-generated model name.
:type model_name: str
:param conf_threshold: The confidence threshold for detections. Only detections with confidence
scores above this threshold will be returned. Default is 0.2.
:type conf_threshold: float
:param iou_threshold: The Intersection over Union (IoU) threshold for non-maximum suppression.
Detections with IoU above this threshold will be merged. Default is 0.7.
:type iou_threshold: float
:return: A list of detected heads. Each head is represented by a tuple containing:
- Bounding box coordinates as (x0, y0, x1, y1)
- The string 'head' (as this function only detects heads)
- The confidence score of the detection
:rtype: List[Tuple[Tuple[int, int, int, int], str, float]]
:example:
>>> from realutils.detect import detect_heads
>>>
>>> detect_heads('yolo/solo.jpg')
[((162, 47, 305, 210), 'head', 0.7701659202575684)]
>>> detect_heads('yolo/2girls.jpg')
[((683, 48, 1199, 754), 'head', 0.8410779237747192), ((105, 91, 570, 734), 'head', 0.8339194059371948)]
>>> detect_heads('yolo/3+cosplay.jpg')
[((329, 194, 426, 309), 'head', 0.8123012781143188), ((359, 20, 448, 122), 'head', 0.8047150373458862), ((185, 81, 265, 166), 'head', 0.7797152996063232)]
>>> detect_heads('yolo/multiple.jpg')
[((867, 259, 1084, 527), 'head', 0.8264595866203308), ((1364, 448, 1583, 724), 'head', 0.8254891633987427), ((480, 201, 781, 565), 'head', 0.8191508054733276), ((1189, 175, 1398, 412), 'head', 0.8097156286239624), ((1028, 671, 1277, 992), 'head', 0.8084591627120972)]
>>> from imgutils.detect import detection_visualize
>>> from matplotlib import pyplot as plt
>>>
>>> image = 'yolo/solo.jpg'
>>> result = detect_heads(image)
>>>
>>> # visualize it
>>> plt.imshow(detection_visualize(image, result))
>>> plt.show()
"""
return yolo_predict(
image=image,
repo_id=_REPO_ID,
model_name=model_name,
conf_threshold=conf_threshold,
iou_threshold=iou_threshold,
**kwargs,
)